Ja n 20 06 CATEGORY O OVER SKEW GROUP RINGS

نویسنده

  • APOORVA KHARE
چکیده

We study the BGG Category O over a skew group ring, involving a finite group acting on a regular triangular algebra. We relate the representation theory of the algebra to Clifford theory for the skew group ring, and obtain results on block decomposition, semisimplicity, and enough projectives. O is also shown to be a highest weight category; the BGG Reciprocity formula is slightly different because the duality functor need not preserve each simple module. Next, we turn to tensor products of such skew group rings. Such a product is also a skew group ring; we explore its representation theory in relation to that of the components. We apply these results to the wreath product of symplectic oscillator algebras, and show that the PBW property does not hold if we deform certain relations. Part 1 : Preliminaries 0.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

N ov 2 00 5 CATEGORY O OVER SKEW GROUP RINGS

We study the BGG Category O over a skew group ring, involving a finite group acting on a regular triangular algebra. We relate the representation theory of the algebra to Clifford theory for the skew group ring, and obtain results on block decomposition, semisimplicity, and enough projectives. O is also shown to be a highest weight category; the BGG Reciprocity formula is slightly different bec...

متن کامل

Category O over Skew Group Rings

We study the BGG Category O over a skew group ring, involving a finite group acting on a regular triangular algebra. We relate the representation theory of the algebra to Clifford theory for the skew group ring, and obtain results on block decomposition, semisimplicity, and enough projectives. O is also shown to be a highest weight category; the BGG Reciprocity formula is slightly different bec...

متن کامل

Ja n 20 06 Invariant tensors for the spin representation of so ( 7 )

We construct a pivotal category by a finite presentation and show that it is an integral form of the category of invariant tensors of the spin representation of the quantum group Uq(B3) over the field Q(q).

متن کامل

ar X iv : m at h / 06 01 47 2 v 1 [ m at h . Q A ] 1 9 Ja n 20 06 REPRESENTATIONS OF QUANTUM GROUPS DEFINED OVER COMMUTATIVE RINGS II

In this article we study the structure of highest weight modules for quantum groups defined over a commutative ring with particular emphasis on the structure theory for invariant bilinear forms on these modules.

متن کامل

Functoriality of the Bgg Category O

This paper aims to contribute to the study of algebras with triangular decomposition over a Hopf algebra, as well as the BGG Category O. We study functorial properties of O across various setups. The first setup is over a skew group ring, involving a finite group Γ acting on a regular triangular algebra A. We develop Clifford theory for A⋊Γ, and obtain results on block decomposition, complete r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006